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We study synchronization in delay-coupled oscillator networks using a master stability function approach.
Within a generic model of Stuart-Landau oscillators �normal form of supercritical or subcritical Hopf bifurca-
tion�, we derive analytical stability conditions and demonstrate that by tuning the coupling phase one can easily
control the stability of synchronous periodic states. We propose the coupling phase as a crucial control
parameter to switch between in-phase synchronization or desynchronization for general network topologies or
between in-phase, cluster, or splay states in unidirectional rings. Our results are robust even for slightly
nonidentical elements of the network.
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Over the last decade, control of dynamical systems and
stabilization of unstable states have become a central issue in
nonlinear science �1�. In parallel, the study of coupled sys-
tems ranging from a few elements to large networks has
evolved into a rapidly expanding field �2�. To determine the
stability of synchronized oscillations in networks, Pecora and
Carroll introduced a technique called master stability func-
tion �MSF� �3�, which allows one to separate the local dy-
namics of the individual nodes from the network topology.
Although some recent approaches have tried to extend this
theory in the presence of time delays �4,5�, up to now control
and design of dynamic behavior in complex networks with
time delay is still in its infancy.

In this Rapid Communication, we aim to fill this gap by
developing analytical tools for a large class of delay-coupled
networks and deriving analytical conditions for controlling
the different states of synchrony. We identify the coupling
phase as a crucial control parameter and demonstrate that by
adjusting this phase one can deliberately switch between dif-
ferent synchronous oscillatory states of the network. We use
a generic model describing a wide range of systems near a
Hopf bifurcation, which allows for an analytical treatment,
including the calculation of the Floquet exponents. These
results promise broad applicability since the presence of time
delays is of crucial importance in a variety of physical, bio-
logical, technological, social, ecological, or economic net-
works where they occur, e.g., as propagation delays in com-
munication networks and laser arrays �6–8�, electronic
circuits �9�, neural systems �10–12� or coupled Kuramoto
phase oscillators �13–15�, or in time-delayed feedback con-
trol loops �16�.

We consider N-dimensional networks of delay-coupled
Stuart-Landau oscillators �j=1, . . . ,N�

ż j = f�zj� + ��
n=1

N

ajn�zn�t − �� − zj�t�� , �1�

with zj =rje
i�j �C, time delay �, and complex coupling

strength �=Kei�. Such phase-dependent couplings have been

shown to be important in overcoming the odd-number limi-
tation of time-delayed feedback control �17� and in anticipat-
ing chaos synchronization �18�. The topology of the network
is determined by the real-valued adjacency matrix A= �ajn�.
Nonzero diagonal elements, for instance, correspond to net-
works with delayed self-feedback. In the following, we con-
sider only constant row sum �=�najn such that each node is
subject to the same input for complete synchronization. This
generalizes the common assumption of zero row sum in the
MSF approach. The local dynamics of each element is given
by the normal form of a supercritical �−� or subcritical �+�
Hopf bifurcation:

f�zj� = �� + i� 	 �1 + i
��zj�2�zj , �2�

with real constants �, ��0, and 
. This system arises natu-
rally as a generic expansion near a Hopf bifurcation, and is
therefore often used as a paradigm for oscillators.

In the following, we focus on synchronous in-phase, clus-
ter, and splay states with a common amplitude rj �r0,m and
phases given by � j =�mt+ j�m with �m=2�m /N. The in-
teger m determines the specific state: in-phase oscillations
correspond to m=0, while cluster and splay states correspond
to m=1, . . . ,N−1. The cluster number dc, which determines
how many clusters of oscillators exist, is given by the least
common multiple of m and N divided by m. dc=N corre-
sponds to a splay state �19�. Using the abbreviation �n,m
=�−�m�+ �n− j��m, which is independent of j for in-
phase oscillation in general networks and for splay and clus-
ter states in ring configurations �20�, we obtain

r0,m
2 = � �� − �K cos � + K�

n=1

N

ajn cos �n,m	 , �3a�

�m = � 	 
r0,m
2 − �K sin � + K�

n=1

N

ajn sin �n,m �3b�

as invariant solutions of r0,m and � j. The following discus-
sion focuses on the supercritical case �upper signs�, but a
similar argument holds also for the subcritical Hopf normal
form �see discussion at the end of this Rapid Communica-
tion�.*schoell@physik.tu-berlin.de
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Figure 1 shows solutions of r0
2�r0�r0,0� and �0 for in-

phase oscillations �m=0� according to Eqs. �3� in depen-
dence on the time delay � for fixed feedback strength �K
=0.3 and 0.7 in panels �a� and �b� and �c� and �d�, respec-
tively. The black �blue� lines show the behavior for the cou-
pling phase �=0. The collective frequency �0 is distributed
around the intrinsic frequency �=1, where multiple solu-
tions are obtained with increasing time delay �. This behav-
ior becomes more pronounced for higher �K �c�. The collec-
tive amplitude also shows multivalued behavior; spurious
solutions with r0

2�0, which correspond to amplitude death,
are indicated as dashed curves. For a coupling phase �
=�0�, these unphysical solutions do not occur since r0

2��
=0.1 as shown by the gray �yellow� curves in �b� and �d�.
Note that for �=�0� the shape of the �0 curve in �a� and �c�
is unchanged, but now all points are valid solutions.

Considering small deviations �rj and �� j, i.e., rj =r0,m�1
+�rj�, � j =�mt+ j�m+�� j, � j = ��rj ,�� j�T, yields a varia-
tional equation for the synchronized state

�̇ = IN � �J0,m
	 − K�m�� + K�A � Rn,m���t − �� , �4�

with the 2N-dimensional vector �= ��1 , . . . ,�N�T, the N�N
identity matrix IN, and matrices �m

= �
�najn cos �n,m −�najn sin �n,m

�najn sin �n,m �najn cos �n,m
�, Rn,m= �

cos �n,m −sin �n,m

sin �n,m cos �n,m
�, and J0,m

	

= �
	2r0,m

2 0

	2
r0,m
2 0 �, which is an important generalization of the

usual MSF approach.
In order to derive an analytical expression for stability,

Eq. �4� has to be diagonalized in terms of A. To succeed, the
rotational matrix Rn,m must not depend on n. This is
achieved in two cases: �i� by considering only in-phase syn-
chronization �m=0� or �ii� by considering special network
configurations.

In case �i�, the matrix Rn,0=R with �n,0=�0 does not
depend on n and with J0,0

	 �J0
	 Eq. �4� simplifies to

�̇ = IN � �J0
	 − �KR�� + K�A � R���t − �� . �5�

Diagonalizing A, we arrive at the block-diagonalized varia-
tional equation:

�̇k�t� = J0
	�k�t� − KR���k�t� − �k�k�t − ��� , �6�

where �k is an eigenvalue of A, k=0,1 ,2 , . . . ,N−1, and �0
=� corresponds to the dynamics in the synchronization
manifold. Since the coefficient matrices in Eq. �6� do not
depend on time, the Floquet exponents of the synchronized
periodic state are given by the eigenvalues � of the charac-
teristic equation

det
J0
	 − �I2 + K�− � + �ke

−���R� = 0. �7�

Figures 2�a� and 2�b� depict the MSF, i.e., the largest real
part of the Floquet exponents, calculated from Eq. �7� for
different coupling parameters. Note that for a unidirection-
ally coupled ring all eigenvalues, i.e., �k=exp�2�ik /N� with
k=0,1 , . . . ,N−1, are located on the black circle. Hence, for
the choice of parameters in panel �a� all eigenvalues lie in the
region of negative maximum real part of the Floquet expo-
nent �stable in-phase solution�, whereas the parameters in
panel �b� do not allow for synchronization of the unidirec-
tional ring. Furthermore, it can be shown using Gersch-
görin’s disk theorem �13� that the eigenvalues are located on
or inside this circle S�0,�� centered at zero with radius � for
any network topology without self-feedback �diagonal ele-
ments ajj =0�. The same holds for the circle S�ajj ,�� cen-
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FIG. 1. �Color online� Collective frequency �0 �left� and
squared amplitude r0

2 �right� of in-phase oscillation �m=0� vs time
delay � for different amplitude of the feedback strength ��K=0.3
and 0.7 in �a�, �b� and �c�, �d�, respectively�. Black �blue� and gray
�yellow� curves correspond to a feedback phase �=0 and �=�0�,
respectively. Unphysical solutions �r0

2�0� are dashed. For �=�0�
the curves in �a� and �c� have the same shape, but no unphysical
solutions occur. Parameters: �=0.1, �=1, and 
=0.

FIG. 2. �Color online� ��a� and �b�� Master stability function in
the �Re � , Im ��-plane for m=0, �=0. The grayscale �color code�
corresponds to the largest real part of the Floquet exponents for a
given value of the product K�. All eigenvalues of the coupling
matrix A for a unidirectional ring lie on the black circle. Parameters
�a� K�=0.3, �=2�, �b� K�=0.08, �=0.52�, others as in Fig. 1. �c�
Distribution of relative phases �=�i−� around the order parameter
for 200 slightly nonidentical elements with different standard devia-
tions �� of the frequencies � for �=�0�. Dotted �black� curve: �
=�0�+� �desynchronization�. Other parameters as in �b�.
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tered at ajj if self-feedback �constant ajj, j=1. . . ,N� is added
while keeping the constant row sum condition. Note that the
MSF is symmetric with respect to a change in sign of Im���.

For coupling phases �=�0�+2l� with integer l, i.e., �0
=2l�, the characteristic equation �7� for the Floquet expo-
nents � factorizes:

0 = �K�ke
−�� − K� 	 2r0

2 − ���K�ke
−�� − K� − �� . �8�

In the supercritical case �upper sign�, the dominant Floquet
exponent is determined by the second factor in Eq. �8� which
gives Re ��0 for K�0 for any eigenvalue �k on or inside
S�0,��, taking into account r0

2�0, and hence stable in-phase
synchronization for any network topology without or with
self-feedback, observing the constant row sum conditions. A
similar equation arises for �=�0�+ �2l+1�� with �0 ob-
tained from Eq. �3b�, and it can be shown by analogous
arguments that there exist exponents � with positive real
part, which results in desynchronization. In conclusion, the
synchronous �in-phase� dynamics can be stabilized or desta-
bilized by proper choice of the coupling phase �. These re-
sults are robust even if slightly nonindentical elements are
considered. Figure 2�c� shows numerical simulations for all-
to-all coupling of 200 elements with Gaussian frequency dis-
tributions around �=1 with different standard deviations ��.
Initial phases are chosen randomly as �i� �0,2��, and initial
radii ri=�, i=1, . . . ,N. For �=�0� the relative phases of the
individual oscillators around the order parameter Rei�

� 1
N� j

zj

�zj�
�in rotating coordinates� are distributed around a

maximum �in-phase� with different sharpness according to
��, whereas for �=�0�+� the phase is uniformly distrib-
uted regardless of �� �desynchronization�.

We now consider case �ii�, i.e., special network configu-
rations, and exemplarily choose a unidirectional ring with
ai,i+1=aN,1=1=� and all other ai,j =0. Then the matrix Rn,m
=Rm with �n,m=�m=�−�m�+�m does not depend on n
and the diagonalization of Eq. �4� yields the same form as
Eq. �6� with �=1, and R replaced by Rm. The eigenvalues of
A are explicitly given by �k=e2ik�/N, k=0,1 , . . . ,N−1, and
the Floquet exponents � can be calculated from the corre-
sponding characteristic equation �7�.

Figure 3�a� shows the stability boundaries of different dy-
namical scenarios in the �K ,�� plane for unidirectional cou-
pling of N=4 oscillators. The coupling phase is fixed at �
=0. The grayscale �color code� indicates regions of different
multistability of in-phase �m=0�, two-cluster �m=2�, and
splay states �m=1, m=3�: black �blue�, dark gray �red�,
light gray �green�, and yellow �white� color corresponds to
regions where one, two, three, or four of these dynamical
states are stable, respectively.

Let us now consider the effects of the coupling phase �.
The specific choice of �=�0�, �1�−� /2, �2�−�, and
�3�−3� /2 enlarges the stability regime of the in-phase,
splay �m=1�, cluster, and splay �m=3� states, respectively, to
the complete �K ,�� plane. This can be understood as follows.
For �m=2l�, i.e., �=�m�−�m+2l� with integer l, the
characteristic equation can again be factorized as Eq. �8�. For
the supercritical case, taking into account r0

2�0 at �=�m�
−�m+2l�, it follows again that the dominant Floquet ex-

ponents have negative real part for any K�0 and �. There-
fore the unidirectional ring configuration of Stuart-Landau
oscillators exhibits in-phase synchrony, splay states, and
clustering according to the choice of the control parameter
�=�0�, �1�−2� /N, or �m�−2�m /N �m�1, N�2�, re-
spectively, for any values of the coupling strength and time
delay.

To illustrate this further and demonstrate the robustness of
our stability results for slightly nonidentical oscillators, we
choose a set of control parameters K=3 and �=3�, denoted
by the black cross in Fig. 3�a�, for which multistability of all
four possible synchronization states is found for the coupling
phase �=0. Figures 3�b�–3�e� show time series from numeri-
cal simulations of four Stuart-Landau oscillators in a unidi-
rectional ring configuration with slightly different frequen-
cies �. For each choice of � in panel �b�–�e� the solutions
�m were obtained by solving Eqs. �2� such that the solution
of �m closest to unity was chosen. The differences of the
phases �i �i=2,3 ,4� relative to the first oscillator phase �1
are plotted. After transients �note that the transient oscilla-
tions are not resolved on the time scale chosen�, the oscilla-
tors behave exactly as predicted by our theory, i.e., they lock
into in-phase synchronization for �=�0� �b�, into a splay
state for �=�1�−� /2 �c�, into a two-cluster state for �
=�2�−�, where �1=�3 and �2=�4 �d�, and again into a
splay state, albeit with inverted ordering of the phases, for
�=�3�−3� /2 �e�.

Finally, for the subcritical Hopf normal form, it can be
shown that the periodic orbit, which is unstable in the un-
coupled case, can be stabilized in-phase synchronously by,

FIG. 3. �Color online� �a� Stability diagram of a unidirectional
ring of N=4 oscillators in the �K ,��-plane ��=0�. Solid, dash-
dotted, dashed, and dotted boundaries correspond to a stability
change in in-phase �m=0�, two-cluster �m=2�, splay states with
m=1, and m=3, respectively. The black �blue�, dark gray �red�,
light gray �green�, and white �yellow� regions denote multistability
of one, two, three, and four of the above states. ��b�–�e�� Time series
of the phase differences for a unidirectional ring of four slightly
nonidentical oscillators: �b� �=�0�, �c� �1�−� /2, �d� �2�−�, �e�
�3�−3� /2, with �0=1, �1=0.839 03, �2=1, and �3=1.160 97.
Black �blue�, dark gray �red�, and light gray �green� lines denote the
differences �2−�1, �3−�1, and �4−�1, respectively �in �b� and �d�
black �blue� is hidden behind light gray �green��. Parameters: �
=0.1, 
=0, K=3, �=3�, �1=0.997 57, �2=0.990 98, �3

=1.015 18, and �4=0.994 96.
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e.g., bidirectional ring, star, or all-to-all coupling without
self-feedback. In these cases, both the synchronization mani-
fold and the transversal modes are stable. There, Floquet
exponents � satisfy again Eq. �7� with �0=�. For proper
coupling phases �, we find a finite interval of feedback gain
K for which the real parts of all Floquet exponents are nega-
tive. Note that the in-phase synchronization manifold coin-
cides with a single oscillator with delayed self-feedback as
considered in Ref. �17� to refute the alleged odd number
limitation.

For all-to-all coupling the adjacency matrix is given by
ai,i=0 and ai,j =1 for i� j and i , j=1, . . . ,N, while for star
coupling all ai,j =0, except a1,i=1 and ai,1=N−1 for i
=2, . . . ,N. Figure 4 shows Re � in the subcritical case as a
function of coupling strength �K for all-to-all and star cou-
pling. The solid �blue� lines correspond to Re � inside the
synchronization manifold ��0=�=N−1 for both coupling
configurations�. For all-to-all coupling the transversal eigen-
values of A are given by �k=−1 for k=1, . . . ,N−1 and the
corresponding largest Re � are denoted by the dashed �red�
lines in Fig. 4 for different N. For star coupling, the trans-
versal eigenvalues of A are �k=0 for k=1, . . . ,N−2 and
�N−1=−�N−1�, and the corresponding largest Re � are
marked schematically. We stress that for both all-to-all and
star coupling there exists an interval of feedback strength K
in which all Re ��0. Thus, time delayed coupling results in
stabilization and in-phase synchronization.

In conclusion, we have shown that by tuning the coupling
phase in delay-coupled networks one can easily control the
stability of synchronous periodic states, and we have speci-
fied analytic conditions. In general networks in-phase syn-
chronization or desynchronization can be chosen, and in uni-
directional rings either in-phase cluster or splay states can be
selected. The coupling phase is a parameter which is readily

accessible, e.g., in optical experiments �1�. Our results are
robust even for slightly nonidentical elements of the net-
work.
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largest transversal Re � for different N and all-to-all coupling. Flo-
quet exponents for star coupling are independent of N and marked
schematically. Parameters �as in �17��: �=−0.005, �=1, 
=−10,
�=2� / �1−
��, and �=� /4.
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